Phase Noise-Squeezing-Based Parametric Bifurcation Tracking of Mip-Coated Microbeam MEMS Sensor for TNT Explosive Gas Sensing
نویسندگان
چکیده
15. NUMBER OF PAGES 5d. PROJECT NUMBER
منابع مشابه
A Molecularly Imprinted Polymer (MIP)- Coated Microbeam MEMS Sensor for Chemical Detection
Recently, microcantilever-based technology has emerged as a viable sensing platform due to its many advantages such as small size, high sensitivity, and low cost. However, microcantilevers lack the inherent ability to selectively identify hazardous chemicals (e.g., explosives, chemical warfare agents). The key to overcoming this challenge is to functionalize the top surface of the microcantilev...
متن کاملNonlinear-Based MEMS Sensors and Active Switches for Gas Detection
The objective of this paper is to demonstrate the integration of a MOF thin film on electrostatically actuated microstructures to realize a switch triggered by gas and a sensing algorithm based on amplitude tracking. The devices are based on the nonlinear response of micromachined clamped-clamped beams. The microbeams are coated with a metal-organic framework (MOF), namely HKUST-1, to achieve h...
متن کاملA Nanosensor for TNT Detection Based on Molecularly Imprinted Polymers and Surface Enhanced Raman Scattering
We report on a new sensor strategy that integrates molecularly imprinted polymers (MIPs) with surface enhanced Raman scattering (SERS). The sensor was developed to detect the explosive, 2,4,6-trinitrotoluene (TNT). Micron thick films of sol gel-derived xerogels were deposited on a SERS-active surface as the sensing layer. Xerogels were molecularly imprinted for TNT using non-covalent interactio...
متن کاملSensitivity Comparison of Vapor Trace Detection of Explosives Based on Chemo-Mechanical Sensing with Optical Detection and Capacitive Sensing with Electronic Detection
The article offers a comparison of the sensitivities for vapour trace detection of Trinitrotoluene (TNT) explosives of two different sensor systems: a chemo-mechanical sensor based on chemically modified Atomic Force Microscope (AFM) cantilevers based on Micro Electro Mechanical System (MEMS) technology with optical detection (CMO), and a miniature system based on capacitive detection of chemic...
متن کاملCouple Stress Effect on Micro/Nanocantilever-based Capacitive Gas Sensor
Micro/nanocantilevers have been employed as sensors in many applications including chemical and biosensing. Due to their high sensitivity and potential for scalability, miniature sensing systems are in wide use and will likely become more prevalent in micro/nano-electromechanical systems (M-NEMSs). This paper is mainly focused on the use of sensing systems that employ micro/nano-size cantilever...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014